A robustness information and visualization model for time and space assembly line balancing under uncertain demand

نویسندگان

  • Manuel Chica
  • Óscar Cordón
  • Sergio Damas
  • Joaquín Bautista
چکیده

The time and space assembly line balancing problem (TSALBP) is a realistic multiobjective version of assembly line balancing industrial problems involving the joint optimization of conflicting criteria such as the cycle time, the number of stations, and the area of these stations. However, the existing problem formulation does not consider the industrial scenario where the demand of a set of mixed products is variable and uncertain. In this work we propose to introduce novel robustness functions to measure how robust the line configuration is when the production plans demand changes. These functions are based on the stations overload under future demand conditions and are used as additional a posteriori information for the non-dominated solutions found by any multiobjective optimization method. The values of the robustness functions are put together with a novel graphical representation to form a generic model that aims to offer a better picture of the robustness of the set of Pareto-optimal solutions. Real data from the assembly line and production planning of the Nissan plant of Barcelona is considered for the experimentation. This information is also employed to develop a new TSALBP instance generator (NTIGen) that can generate problem instances having industrial real-like features. The use of the robustness information model is illustrated in an experimentation formed by a set of instances generated by NTIGen. Results show how the use of this robustness information model is necessary for the decision maker as it allows her/him to discriminate between different assembly line configurations when future demand conditions vary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty

This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...

متن کامل

A Bi-Objective Approach to an Assembly Line Re-Balancing Problem: Model and Differential Evolution Algorithms

Assembly lines are special kinds of production systems which are of great importance in the industrial production of high quantity commodities. In many practical manufacturing systems, configuration of assembly lines is fixed and designing a new line may be incurred huge amount of costs and thereby it is not desirable for practitioners. When some changes related to market demand occur, it is wo...

متن کامل

‘BALANCING AND SEQUENCING’ VERSUS ‘ONLY BALANCING’ IN MIXED MODEL U-LINE ASSEMBLY SYSTEMS: AN ECONOMIC ANALYSIS

With the growth in customers’ demand diversification, mixed-model U-lines (MMUL) have acquired increasing importance in the area of assembly systems. There are generally two different approaches in the literature for balancing such systems. Some researchers believe that since the types of models can be very diverse, a balancing approach without simultaneously sequencing of models will not yield...

متن کامل

Assembly line balancing to minimize balancing loss and system loss

Assembly Line production is one of the widely used basic principles in production system. The problem of Assembly Line Balancing deals with the distribution of activities among the workstations so that there will be maximum utilization of human resources and facilities without disturbing the work sequence. Research works reported in the literature mainly deals with minimization of idle time i.e...

متن کامل

Simultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing

This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013